Jack Steinberger (born Hans Jakob Steinberger; May 25, 1921December 12, 2020) was a German-born American physicist noted for his work with Neutrino, the subatomic particles considered to be elementary constituents of matter. He was a recipient of the 1988 Nobel Prize in Physics, along with Leon M. Lederman and Melvin Schwartz, for the discovery of the muon neutrino. Through his career as an experimental particle physicist, he held positions at the University of California, Berkeley, Columbia University (1950–68), and the CERN (1968–86). He was also a recipient of the United States National Medal of Science in 1988, and the Matteucci Medal from the Italian Academy of Sciences in 1990.
Steinberger emigrated to the United States at the age of 13, making the trans-Atlantic trip with his brother Herbert. Jewish charities in the U.S. arranged for Barnett Farroll to care for him as a foster child. Steinberger attended New Trier Township High School, in Winnetka, Illinois. He was reunited with his parents and younger brother in 1938.
Steinberger studied chemical engineering at Armour Institute of Technology (now Illinois Institute of Technology) but left after his scholarship ended to help supplement his family's income. He obtained a bachelor's degree in chemistry from the University of Chicago, in 1942. Shortly thereafter, he joined the Signal Corps at MIT. With the help of the G.I. Bill, he returned to graduate studies at the University of Chicago in 1946, where he studied under Edward Teller and Enrico Fermi. His Ph.D. thesis concerned the energy spectrum of electrons emitted in muon particle decay; his results showed that this was a three-body decay, and implied the participation of two neutral particles in the decay (later identified as the electron () and muon neutrino () neutrinos) rather than one.
Following Princeton, in 1949, Steinberger went to the Radiation Lab at the University of California at Berkeley, where he performed an experiment which demonstrated the production of neutral pions and their decay to photon pairs. This experiment utilized the 330 MeV synchrotron and the newly invented scintillation counters.
Despite this and other achievements, he was asked to leave the Radiation Lab at Berkeley in 1950, due to his refusal to sign the so-called non-Communist Oath.
Steinberger accepted a faculty position at Columbia University in 1950. The newly commissioned meson beam at Nevis Labs provided the tool for several important experiments. Measurements of the production cross-section of pions on various nuclear targets showed that the pion has odd parity. A direct measurement of the production of pions on a liquid hydrogen target, then not a common tool, provided the data needed to show that the pion has spin zero. The same target was used to observe the relatively rare decay of neutral pions to a photon, an electron, and a positron. A related experiment measured the mass difference between the charged and neutral pions based on the angular correlation between the neutral pions produced when the negative pion is captured by the proton in the hydrogen nucleus. Other important experiments studied the angular correlation between electron–positron pairs in neutral pion decays, and established the rare decay of a charged pion to an electron and neutrino; the latter required use of a liquid-hydrogen bubble chamber.
An important characteristic of the weak interaction is its violation of parity symmetry. This characteristic was established through the measurement of the spins and parities of many hyperons. Steinberger and his collaborators contributed several such measurements using large (75 cm) liquid-hydrogen bubble chambers and separated hadron beams at Brookhaven.
F. Eisler, R. Plano, A. Prodell, N. Samios, M. Schwartz, J. Steinberger, P. Bassi, V. Borelli, Giampietro Puppi, G. Tanaka, P. Woloschek, V. Zoboli, M. Conversi, P. Franzini, I. Mannelli, R. Santangelo, V. Silvestrini, D. A. Glaser, C. Graves, and M. L. Perl Demonstration of Parity Nonconservation in Hyperon Decay.Phys. Rev. 108, 1353 – Published December 1, 1957 One example is the measurement of the invariant mass distribution of electron–positron pairs produced in the decay of Sigma baryon to Lambda baryon.
Back in the United States, Steinberger conducted an experiment at Brookhaven to observe CP violation in the semi-leptonic decays of neutral kaons. The charge asymmetry relates directly to the epsilon parameter, which was thereby measured precisely. This experiment also allowed the deduction of the phase of epsilon, and confirmed that CPT symmetry is a good symmetry of nature.
These new techniques proved crucial for the first demonstration of direct CP-violation. The NA31 experiment at CERN was built in the early 1980s using the CERN SPS 400 GeV proton synchrotron. As well as banks of MWPCs and a hadron calorimeter, it featured a liquid argon electromagnetic calorimeter with exceptional spatial and energy resolution. NA31 showed that direct CP violation is real.
Steinberger worked on the ALEPH experiment at the Large Electron–Positron Collider (LEP), where he served as the experiment's spokesperson. Among the ALEPH experiment's initial accomplishments was the precise measurement of the number of families of and in the Standard Model through the measurement of the decays of the Z boson.
He retired from CERN in 1986, and went on to become a professor at the Scuola Normale Superiore di Pisa in Italy. He continued his association with the CERN laboratory through his visits into his 90s.
The experiment used charged pion beams generated with the Alternating Gradient Synchrotron at Brookhaven National Laboratory. The pions decayed to muons which were detected in front of a steel wall; the neutrinos were detected in spark chambers installed behind the wall. The coincidence of muons and neutrinos demonstrated that a second kind of neutrino was created in association with muons. Subsequent experiments proved this neutrino to be distinct from the first kind (electron-type). Steinberger, Lederman and Schwartz published their work in Physical Review Letters in 1962.
He gave his Nobel medal to New Trier High School in Winnetka, Illinois (USA), of which he was an alumnus.
He was also awarded the National Medal of Science in 1988, by the then US president, Ronald Reagan and was the recipient of the Matteucci Medal in 1990, from the Italian Academy of Sciences.
In the 1980s Steinberger resumed relations with his native town Bad Kissingen. He often visited Bad Kissingen after that. The school he had attended there was named Jack-Steinberger-Gymnasium in 2001. In 2006 Steinberger was made honorary citizen of Bad Kissingen. "I feel welcome in Bad Kissingen. This is my hometown and I was raised there. I feel as a German again now" he told the Bavarian broadcasting company Bayerischer Rundfunk in 2013.
He died on December 12, 2020, at his home in Geneva. He was aged 99.
Career
Early research
Investigations of strange particles
Neutrinos and the weak neutral current
Study of CP violation
CERN
Nobel Prize
Selected publications
Personal life
target="_blank" rel="nofollow"> Bad Kissingen trauert um Nobelpreisträger Jack Steinberger, Bayerischer Rundfunk, December 16, 2020 (in German)
See also
External links
|
|